Drosophila Dscam Proteins Regulate Postsynaptic Specificity at Multiple-Contact Synapses

نویسندگان

  • S. Sean Millard
  • Zhiyuan Lu
  • S. Lawrence Zipursky
  • Ian A. Meinertzhagen
چکیده

In both vertebrate and invertebrate visual systems, neurons form multiple-contact synapses at which a single presynaptic site releases neurotransmitter upon a discrete combination of different postsynaptic cells. Recognition mechanisms underlying the assembly of such synapses are not known. In Drosophila, photoreceptor terminals form tetrad synapses that incorporate an invariable pair of postsynaptic elements, one each from lamina interneuron L1 and L2, and two elements from other cells. Here, we demonstrate that Drosophila Dscam1 and Dscam2, genes encoding homophilic repulsive proteins, act redundantly to ensure the invariable combination of L1 and L2 postsynaptic elements at all tetrads. We demonstrate that this strict pairing is lost in Dscam1;Dscam2 double mutants. Thus, removing these two repulsive proteins allows elements from the same cell to incorporate into the same postsynaptic tetrad, altering the specificity of photoreceptor transmission. We propose that Dscams regulate synaptic specificity by excluding inappropriate partners at multiple-contact synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam

Different classes of olfactory receptor neurons (ORNs) in Drosophila innervate distinct targets, or glomeruli, in the antennal lobe of the brain. Here we demonstrate that specific ORN classes require the cell surface protein Dscam (Down Syndrome Cell Adhesion Molecule) to synapse in the correct glomeruli. Dscam mutant ORNs frequently terminated in ectopic sites both within and outside the anten...

متن کامل

Visual circuit assembly in Drosophila.

Both insect and vertebrate visual circuits are organized into orderly arrays of columnar and layered synaptic units that correspond to the array of photoreceptors in the eye. Recent genetic studies in Drosophila have yielded insights into the molecular and cellular mechanisms that pattern the layers and columns and establish specific connections within the synaptic units. A sequence of inductiv...

متن کامل

Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity

A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, c...

متن کامل

GENETICS | FLYBOOK NERVOUS SYSTEM AND BEHAVIOR Transmission, Development, and Plasticity of Synapses

Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are...

متن کامل

Transmission, Development, and Plasticity of Synapses.

Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2010